Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Response of Adsorbed Polyelectrolyte Monolayers to Changes in Solution Composition

Author:
Porus, Maria  Maroni, Plinio  Borkovec, Michal  


Journal:
LANGMUIR


Issue Date:
2012


Abstract(summary):

Reflectometry and quartz crystal microbalance are used to study the response of adsorbed polyelectrolyte monolayers to solutions of variable composition. These techniques respectively yield the dry and wet masses of the adsorbed layer, and by combing these results, one obtains the water content and the thickness of the polyelectrolyte films. The systems investigated are films of adsorbed poly(allyl amine) (PAH) and poly-L-lysine (PLL) on silica and films of poly(styrene sulfonate) (PSS) on amino-functionalized silica. When such films are adsorbed from concentrated polyelectrolyte solutions containing high levels of salt, they are found to swell reversibly up to a factor of 2 when incubated in solutions of low salt. This swelling is attributed to the strengthening of repulsive electrostatic interactions between the adsorbed polyelectrolyte chains. PAH films may also swell upon decrease of pH, and collapse upon a pH increase. This transition shows a marked hysteresis and can be rationalized by the competition of electrostatic repulsions between the chains and their attraction to the surface. The presently observed swelling phenomena are caused by a collective process driven by the electrostatic repulsion between the densely adsorbed polyelectrolyte chains. Such responsive layers are only obtained by adsorption from high polyelectrolyte and salt concentrations. Layers absorbed at low polyelectrolyte and salt concentrations show only minor swelling effects, since the adsorbed polyelectrolytes layers are dilute and the adsorbed polyelectrolyte chains interact only weakly.


Page:
17506---17516


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads