Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Elastic, electronic and thermal properties of YSZ from first principles

Author:
Jin, Lei  Yu, Qinghe  Rauf, Abdul  Zhou, Chungen  


Journal:
SOLID STATE SCIENCES


Issue Date:
2012


Abstract(summary):

First principles calculations were performed to investigate the elastic, electronic and thermal properties of 14% cubic yttria-stabilized zirconia (YSZ) using the pseudo potential plane-wave method within the gradient generalized approximation (GGA) for the exchange and correlation potential. Computed lattice constant parameters are in good agreement with the available experimental results. The three independent elastic constants were computed by means of the stress strain method, indicating that 14% cubic YSZ is a mechanically stable structure. From the knowledge of the elastic constants, a set of related properties, namely bulk, shear modulus, Young's modulus, sound velocity, Debye temperature, thermal capacity and minimum thermal conductivity are numerically estimated in the frame work of the Voigt-Reuss-Hill approximation for YSZ polycrystalline. The calculated bulk modulus, shear modulus, Young's modulus, sound velocity, Debye temperature, thermal capacity and minimum thermal conductivity are in reasonable agreement with the available experimental and theory data. Density of states, charge density and Mulliken population analysis show that the 14% cubic YSZ is covalent and possess ionic character. (C) 2011 Elsevier Masson SAS. All rights reserved.


Page:
106---110


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads