Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

First Principles Calculations of the Electronic Structure of ZrN Allotropes RID B-1132-2008

Author:
Yin, Li-Chang  Saito, Riichiro  


Journal:
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN


Issue Date:
2011


Abstract(summary):

The atomic structures and electronic properties of different ZrN allotropes, including face-centered cubic ZrN (B1 ZrN), hypothetic wurtzite (w) ZrN, and hypothetic two-dimensional (2D) and three-dimensional (3D) layered hexagonal (h) ZrN, are investigated by systematic first-principles calculations. Although the cohesive energy calculation indicates that the B1 ZrN is more stable than the hypothetic w-ZrN and h-ZrN, we suggest that the monolayer h-ZrN may be stable on some substrates. Charge population analysis shows that the polar, covalent bonding character appears between N atoms and Zr atoms for all ZrN allotropes involved in this paper. A Van Hove singularity (VHS) with a high density of states (DOS) locating at 0.2 eV above the Fermi level appears for monolayer h-ZrN, which results from a saddle point of the partially occupied Zr-d(z2) energy bands due to lack of interlayer interaction. Such a VHS observed in the monolayer h-ZrN indicates that this hypothetic monolayer material might be a potential candidate for new superconducting material by electron doping.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads