Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Electronic structure of oxide fuels from experiment and first principles calculations

Author:
Aguiar, J. A.  Groenbech-Jensen, N.  Perlov, A.  Milman, V.  Gao, S. P.  Pickard, C. J.  Browning, N. D.  


Journal:
ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2009 (EMAG 2009)


Issue Date:
2010


Abstract(summary):

Energy loss spectra from a variety of cubic oxides are compared with ab-initio calculations based on the density functional plane wave method (CASTEP). In order to obtain agreement between experimental and theoretical spectra, unique material specific considerations were taken into account. The spectra were calculated using various approximations to describe core-hole effects and electron correlation. The calculations are based on both the generalized gradient approach and the local spin density approximation when dealing with the correlation in to show qualitative agreement with the sensitive oxygen K-edge spectra in ceria, zirconia, and urania. Comparison of experimental and theoretical results let us characterize the main electronic interactions responsible for both the electronic structure and the resulting EELS spectra of the compounds in question.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads