Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Filtration combustion characteristics of low calorific gas in SiC foams

Author:
Zheng, Cheng-Hang  Cheng, Le-Ming  Li, Tao  Luo, Zhong-Yang  Cen, Ke-Fa  


Journal:
FUEL


Issue Date:
2010


Abstract(summary):

This study investigated the combustion characteristics of low calorific gas in silicon carbide (SiC) foam. The temperature distribution, reaction zone, maximum temperature, and combustion wave propagation velocity were analysed at different inlet velocities, equivalence ratios of premixed gases, and pore densities. The temperature distribution near the reaction zone was determined by a time-based method. Super-adiabatic combustion was obtained in porous media under different conditions. The experimental results showed that higher temperatures were obtained in SiC foams of 30 pores per inch (PPI) than those measured for foam of 20 PPI. Increased equivalence ratio of premixed gases and pore density led to a thicker reaction zone and a higher preheating efficiency in the preheating zone. The combustion wave propagation velocity, which was less than 2 mm/s under these experimental conditions, was increased with increased inlet velocity and decreased equivalence ratio of premixed gases. The combustion wave propagation in foams of 20 PPI had the lowest velocity because of the good match of convection and radiation. (C) 2009 Elsevier Ltd. All rights reserved.


Page:
2331---2337


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads