Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

On the treatment of entropy mixing in numerical cosmology

Author:
Wadsley, J. W.  Veeravalli, G.  Couchman, H. M. P.  


Journal:
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY


Issue Date:
2008


Abstract(summary):

For simulations of fluid dynamics in astrophysics, physical viscosity and diffusion are typically neglected. However, in this high Reynolds number regime, real fluids become highly turbulent and turbulent processes mediate substantial transport of momentum and heat that is diffusive in nature. In the absence of models for these processes, code-dependent numerical effects dominate how diffusion operates and may lead to physically incorrect simulation results. We highlight the qualitative difference in these numerical effects for smooth particle hydrodynamics (SPH) and grid-based Eulerian codes using two test problems: a buoyant gas bubble and gas in a galaxy cluster. Grid codes suffer from numerical diffusion in the absence of explicit terms, and small-scale diffusion of heat is completely absent in the Lagrangian SPH method. We find that SPH with heat diffusion added at a level similar to that expected from turbulence diffusion generates more physically appealing results. These results suggest, but do not confirm, that a flat entropy core is to be expected for gas in an idealized galaxy cluster (i.e. one without physics beyond that of a non-radiating gas). A goal of this work is thus to draw attention to the as yet unfulfilled need for models of turbulent diffusive processes in compressible gases in astrophysics.


Page:
427---438


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads