Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Motion generation and control for the pneumatic biped "lucy" RID B-2881-2009

Author:
Verrelst, Bjoern  Vermeulen, Jimmy  Vanderborght, Bram  Van Ham, Ronald  Naudet, Joris  Lefeber, Dirk  Daerden, Frank  Van Damme, Michael  


Journal:
INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS


Issue Date:
2006


Abstract(summary):

This paper reports on the control structure of the pneumatic biped "Lucy." The robot is actuated with pleated pneumatic artificial muscles which have interesting characteristics that can be exploited for legged machines. They have a high power-to-weight ratio, an adaptable compliance and they can reduce impact effects. The current control architecture focuses on the trajectory generator and the tracking controller, which is divided into a computed torque controller, a delta-p unit, a PI position controller and a pressure bang-bang controller. The trajectory generator provides polynomial joint trajectories while the computed torque, combined with the delta-p unit, calculates the required muscle pressure levels. The PI and bang-bang controller work at a pressure level to cope with modeling errors and to set the pressures in each muscle. The control design is divided into single support and double support, where specifically the computed torque differs for these two phases. The proposed control architecture is evaluated with a full hybrid dynamic simulation model of the biped. This simulator combines the dynamical behavior of the robot with the thermodynamical effects that take place in the muscle-valves system. The observed hardware limitations of the real robot and expected model errors are taken into account in order to give a realistic qualitative evaluation of the control performance and to test the robustness. A preliminary implementation of the presented controller on the real biped, representing a walking motion of the robot while both feet are in the air, is discussed. This first implementation shows already promising results concerning tracking performance of the proposed control architecture. It confirms that the pneumatic tracking system can be used for a dynamic application such as a biped walking robot.


Page:
67---103


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads