Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
home > search

Now showing items 1 - 1 of 1

  • Comprehensive Study on the Effect of CuO Nano Fluids Prepared Using One-Step Chemical Synthesis Method on the Behavior of Waste Cooking Oil Biodiesel in Compression Ignition Engine

    Velmurugan, Ramanathan   Mayakrishnan, Jaikumar   Induja, S.   Raja, Selvakumar   Nandagopal, Sasikumar   Sathyamurthy, Ravishankar  

    Vegetable oil is considered as one among the promising alternatives for diesel fuel as it holds properties very close to diesel fuel. However, straight usage of vegetable oil in compression ignition (CI) engine resulted in inferior performance and emission behavior. This can be improved by modifying the straight vegetable oil into its esters, emulsion, and using them as a fuel in CI engine showcased an improved engine behavior. Waste cooking oil (WCO) is one such kind of vegetable oil gained a lot of attraction globally as it is generated in a large quantity locally. The present investigation aims at analyzing various parameters of single cylinder four stroke CI engine fueled with waste cooking oil biodiesel (WCOB), waste cooking oil biodiesel water emulsion (WCOBE) while the engine is operated with a constant speed of 1500 rpm. Furthermore, an attempt is made to study the impact of nanofluids in the behavior of the engine fueled with WCOB blended with nanofluids (WCOBN50). This work also explored a novel method of producing nanofluids using one-step chemical synthesis method. Copper oxide (CuO) nanofluids were prepared by the above mentioned method and blended with waste cooking oil biodiesel (WCOBN50) using ethylene glycol as a suitable emulsifier. Results revealed that brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) of WCOBN50 are significantly improved when compared to WCOB and WCOBE. Furthermore, a higher reduction in oxides of nitrogen (NOx), carbon monoxide (CO), hydrocarbon (HC), and smoke emissions were observed with WCOBN50 on comparison with all other tested fuels at different power outputs. It is also identified that one-step chemical synthesis method is a promising technique for preparing nanofluids with a high range of stability.
    Download Collect

Contact

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

Submit Feedback