Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
home > search

Now showing items 1 - 16 of 38

  • thin Low Gain Avalanche Detectors (LGAD) for timing applications

    Carulla, M.   Doblas, A.   Flores, D.   Galloway, Z.   Hidalgo, S.   Kramberger, G.   Luce, Z.   Mandic, I.   Mazza, S.   Merlos, A.   Pellegrini, G.   Quirion, D.   Rodríguez, R.   Sadrozinski, H.F.-W.   Seiden, A.   Zhao, Y.  

    Download Collect
  • Timing performance of small cell 3D silicon detectors

    Kramberger, G.   Cindro, V.   Flores, D.   Hidalgo, S.   Hiti, B.   Manna, M.   Mandić, I.   Mikuž, M.   Quirion, D.   Pellegrini, G.   Zavrtanik, M.  

    Download Collect
  • Mesoscopic proximity effect in double-barrier superconductor/normal-metal junctions

    Quirion, D.   Hoffmann, C.   Lefloch, F.   Sanquer, M.  

    We report transport measurements down to T=60 mK of SININ and SNIN structures in the diffusive limit. We fabricated Al-AlOx/Cu/AlOx/Cu (SININ) and Al/Cu/AlOx/Cu (SNIN) vertical junctions. A zero-bias anomaly was observed in a metallic SININ structure. We attribute this peak of conductance to coherent multireflections of electrons between the two tunnel barriers. This conductance maximum is quantitatively fit by the relevant theory of mesoscopic SININ structures. When the barrier at the SN interface is removed (SNIN structure), we observe a peak of conductance at finite voltage accompanied by an excess of subgap conductance.
    Download Collect
  • Transport and heating effect in proximity superconducting structures

    Quirion, D.   Lefloch, F.   Sanquer, M.  

    In this paper, we emphasise the role of heating effect in superconducting mesoscopic systems. We studied two different samples exhibiting two major superconducting mesoscopic effects (reflectionless tunnelling and reentrance). First, we measured the subgap conductance of titanium nitride (superconductor, Tc
    Download Collect
  • Gain and time resolution of 45 mu m thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 10(15) n(eq)/cm(2)

    Lange, J.   Carulla, M.   Cavallaro, E.   Chytka, L.   Davis, P. M.   Flores, D.   Forster, F.   Grinstein, S.   Hidalgo, S.   Komarek, T.   Kramberger, G.   Mandic, I.   Merlos, A.   Nozka, L.   Pellegrini, G.   Quirion, D.   Sykora, T.  

    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 mu m were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 10(15) n(eq)/cm(2). The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3 x 10(14) n(eq)/cm(2), similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 10(15) n(eq)/cm(2), the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.
    Download Collect
  • Prototype ATLAS IBL modules using the FE-I4A front-end readout chip

    Albert, J.   Alex, M.   Alimonti, G.   Allport, P.   Altenheiner, S.   Ancu, L.S.   Andreazza, A.   Arguin, J.   Arutinov, D.   Backhaus, M.   Bagolini, A.   Ballansat, J.   Barbero, M.   Barbier, G.   Bates, R.   Battistin, M.   Baudin, P.   Beau, T.   Beccherle, R.   Beck, H.   Benoit, M.   Bensinger, J.   Bomben, M.   Borri, M.   Boscardin, M.   Direito, J.B.   Bousson, N.   Boyd, R.G.   Breugnon, P.   Bruni, G.   Bruschi, M.   Buchholz, P.   Buttar, C.   Cadoux, F.   Calderini, G.   Caminada, L.   Capeans, M.   Casse, G.   Catinaccio, A.   Cavalli-Sforza, M.   Chauveau, J.   Chu, M.   Ciapetti, M.   Cindro, V.   Citterio, M.   Clark, A.   Cobal, M.   Coelli, S.   Colijn, A.   Colin, D.   Collot, J.   Crespo-Lopez, O.   Dalla Betta, G.   Darbo, G.   DaVia, C.   David, P.   Debieux, S.   Delebecque, P.   Devetak, E.   DeWilde, B.   Di Girolamo, B.   Dinu, N.   Dittus, F.   Diyakov, D.   Djama, F.   Dobos, D.   Doonan, K.   Dopke, J.   Dorholt, O.   Dube, S.   Dushkin, A.   Dzahini, D.   Egorov, K.   Ehrmann, O.   Elldge, D.   Elles, S.   Elsing, M.   Eraud, L.   Ereditato, A.   Eyring, A.   Falchieri, D.   Falou, A.   Fang, X.   Fausten, C.   Favre, Y.   Ferrere, D.   Fleta, C.   Fleury, J.   Flick, T.   Forshaw, D.   Fougeron, D.   Fritzsch, T.   Gabrielli, A.   Gaglione, R.   Gallrapp, C.   Gan, K.   Garcia-Sciveres, M.   Gariano, G.   Gastaldi, T.   Gemme, C.   Gensolen, F.   George, M.   Ghislain, P.   Giacomini, G.   Gibson, S.   Giordani, M.   Giugni, D.   Gjersdal, H.   Glitza, K.   Gnani, D.   Godlewski, J.   Gonella, L.   Gorelov, I.   Gorisek, A.   Gossling, C.   Grancagnolo, S.   Gray, H.   Gregor, I.   Grenier, P.   Grinstein, S.   Gromov, V.   Grondin, D.   Grosse-Knetter, J.   Hansen, T.   Hansson, P.   Harb, A.   Hartman, N.   Hasi, J.   Hegner, F.   Heim, T.   Heinemann, B.   Hemperek, T.   Hessey, N.   Hetmanek, M.   Hoeferkamp, M.   Hostachy, J.   Hugging, F.   Husi, C.   Iacobucci, G.   Idarraga, J.   Ikegami, Y.   Janoska, Z.   Jansen, J.   Jansen, L.   Jensen, F.   Jentzsch, J.   Joseph, J.   Kagan, H.   Karagounis, M.   Kass, R.   Kenney, C.   Kersten, S.   Kind, P.   Klingenberg, R.   Kluit, R.   Kocian, M.   Koffeman, E.   Kok, A.   Korchak, O.   Korolkov, I.   Kostyukhin, V.   Krieger, N.   Kruger, H.   Kruth, A.   Kugel, A.   Kuykendall, W.   La Rosa, A.   Lai, C.   Lantzsch, K.   Laporte, D.   Lapsien, T.   Lounis, A.   Lozano, M.   Lu, Y.   Lubatti, H.   Macchiolo, A.   Mallik, U.   Mandie, I.   Marchand, D.   Marchiori, G.   Massol, N.   Matthias, W.   Mattig, P.   Mekkaoui, A.   Menouni, M.   Menu, J.   Meroni, C.   Mesa, J.   Micelli, A.   Michal, S.   Miglioranzi, S.   Mikuz, M.   Mitsui, S.   Monti, M.   Moore, J.   Morettini, P.   Muenstermann, D.   Murray, P.   Nellist, C.   Nelson, D.   Nessi, M.   Neumann, M.   Nisius, R.   Nordberg, M.   Nuiry, F.   Oppermann, H.   Oriunno, M.   Padilla, C.   Parker, S.   Pellegrini, G.   Pelleriti, G.   Pernegger, H.   Piacquadio, N.   Picazio, A.   Pohl, D.   Polini, A.   Popule, J.   Bueso, X.P.   Povoli, M.   Puldon, D.   Pylypchenko, Y.   Quadt, A.   Quirion, D.   Ragusa, F.   Rambure, T.   Richards, E.   Ristic, B.   Rohne, O.   Rothermund, M.   Rovani, A.   Rozanov, A.   Rubinskiy, I.   Rudolph, M.   Rummler, A.   Ruscino, E.   Salek, D.   Salzburger, A.   Sandaker, H.   Schipper, J.   Schneider, B.   Schorlemmer, A.   Schroer, N.   Schwemling, P.   Seidel, S.   Seiden, A.   Sicho, P.   Skubic, P.   Sloboda, M.   Smith, D.   Sood, A.   Spencer, E.   Strang, M.   Stugu, B.   Stupak, J.   Su, D.   Takubo, Y.   Tassan, J.   Teng, P.   Terada, S.   Todorov, T.   Tomasek, M.   Toms, K.   Travaglini, R.   Trischuk, W.   Troncon, C.   Troska, G.   Tsiskaridze, S.   Tsurin, I.   Tsybychev, D.   Unno, Y.   Vacavant, L.   Verlaat, B.   Vianello, E.   Vigeolas, E.   von Kleist, S.   Vrba, V.   Vuillermet, R.   Wang, R.   Watts, S.   Weber, M.   Weber, M.   Weigell, P.   Weingarten, J.   Welch, S.   Wenig, S.   Wermes, N.   Wiese, A.   Wittig, T.   Yildizkaya, T.   Zeitnitz, C.   Ziolkowski, M.   Zivkovic, V.   Zoccoli, A.   Zorzi, N.   Zwalinski, L.  

    The ATLAS collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.
    Download Collect
  • Fabrication and nuclear reactor tests of ultra-thin 3D silicon neutron detectors with a boron carbide converter (vol 9, P04010, 2014)

    Fleta, C.   Guardiola, C.   Esteban, S.   Jumilla, C.   Pellegrini, G.   Quirion, D.   Rodriguez, J.   Lousa, A.   Martinez-de-Olcoz, L.   Lozano, M.  

    Download Collect
  • 50 mu m thin Low Gain Avalanche Detectors (LGAD) for timing applications

    Carulla, M.   Doblas, A.   Flores, D.   Galloway, Z.   Hidalgo, S.   Kramberger, G.   Luce, Z.   Mandic, I.   Mazza, S.   Merlos, A.   Pellegrini, G.   Quirion, D.   Rodriguez, R.   Sadrozinski, H. F. -W.   Seiden, A.   Zhao, Y.  

    LGAD detectors on 300 mu m thick high resistivity p-type substrates were proposed for the first time by IMB-CNM-CSIC. They are customized Avalanche Photodiodes (APD) to obtain a high electric field region confined close to the reversed junction. Therefore, only electrons generated by an incident particle passing through the detector and drifting to the n+ contact, start the impact ionization process. Thus, the collected charge is multiplied. The basic difference between APDs and LGADs is the gain. LGADs have a moderate gain in order to avoid the inherent problems due to high multiplication: cross talk and high noise. In that way, the detector signal can be kept high without increasing the noise. These devices have been successfully fabricated and extensively characterized, before and after irradiation. Unfortunately, neutron and proton radiation cause the degradation of the gain and the creation of bulk traps, degrading the timing resolution. One way to reduce the radiation induced degradation is to minimize the substrate thickness, thus improving the timing resolution of LGAD detectors. Two technology approaches have been contemplated: the use of SOI (Silicon on insulator) substrates and Silicon to Silicon bonding substrates, both with a very thin active silicon layer of 50 mu m. As a consequence, drifting distances of generated electrons and holes are significantly reduced, resulting in a decrease in the number of electrons and holes trapped by radiation induced bulk defects. A new family of thin detectors, produced in 2x2 arrays prototypes, for the ATLAS experiment High Granularity Timing Detector (HGTD) is proposed. These detectors are suitable for timing applications with time resolution in the range of 30 ps at 20 degrees C. Optimization of the LGAD structures for the HGTD experiment and the detector experimental performances are presented and discussed.
    Download Collect
  • Module production of the one-arm AFP 3D pixel tracker

    Grinstein, S.   Cavallaro, E.   Chmeissani, M.   Dorholt, O.   Forster, F.   Lange, J.   Lopez Paz, I.   Manna, M.   Pellegrini, G.   Quirion, D.   Rijssenbeek, M.   Rohne, O.   Stugu, B.  

    The ATLAS Forward Proton (AFP) detector is designed to identify events in which one or two protons emerge intact from the LHC collisions. AFP will consist of a tracking detector, to measure the momentum of the protons, and a time of flight system to reduce the background from multiple proton-proton interactions. Following an extensive qualification period, 3D silicon pixel sensors were selected for the AFP tracker. The sensors were produced at CNM (Barcelona) during 2014. The tracker module assembly and quality control was performed at IFAE during 2015. The assembly of the first AFP arm and the following installation in the LHC tunnel took place in February 2016. This paper reviews the fabrication process of the AFP tracker focusing on the pixel modules.
    Download Collect
  • Readout electronics for LGAD sensors

    Alonso, O.   Franch, N.   Canals, J.   Palacio, F.   Lopez, M.   Vila, A.   Dieguez, A.   Carulla, M.   Flores, D.   Hidalgo, S.   Merlos, A.   Pellegrini, G.   Quirion, D.  

    In this paper, an ASIC fabricated in 180 nm CMOS technology from AMS with the very front-end electronics used to readout LGAD sensors is presented as well as its experimental results. The front-end has the typical architecture for Si-strip readout, i.e., preamplification stage with a Charge Sensitive Amplifier (CSA) followed by a CR-RC shaper. Both amplifiers are based on a folded cascode structure with a PMOS input transistor and the shaper only uses passive elements for the feedback stage. The CSA has programmable gain and a configurable input stage in order to adapt to the different input capacitance of the LGAD sensors (pixelated, short and long strips) and to the different input signal (depending on the gain of the LGAD). The fabricated prototype has an area of 0.865mm x 0.965 mm and includes the biasing circuit for the CSA and the shaper, 4 analog channels (CSA+shaper) and programmable charge injection circuits included for testing purposes. Noise and power analysis performed during simulation fixed the size of the input transistor to W/L =3D 860 mu m/0.2 mm. The shaping time is fixed by design at 1 us and, in this ASIC version, the feedback elements of the shaper are passive, which means that the area of the shaper can be reduced using active elements in future versions. Finally, the different gains of the CSA have been selected to maintain an ENC below 400 electrons for a detector capacitor of 20 pF, with a power consumption of 150 mu W per channel.
    Download Collect
  • Performance of Irradiated RD53A 3D Pixel Sensors

    Terzo, S.   Chmeissani, M.   Giannini, G.   Grinstein, S.   Manna, M.   Pellegrini, G.   Quirion, D.   Vazquez Furelos, D.  

    The ATLAS experiment at the LHC will replace its current inner tracker system for the HL-LHC era. 3D silicon pixel sensors are being considered as radiation-hard candidates for the innermost layers of the new fully silicon-based tracking detector. 3D sensors with a small pixel size of (50 x 50) mu m(2) and (25 x 100) mu m(2) compatible with the first prototype ASIC for the HL-LHC, the RD53A chip, have been studied in beam tests after uniform irradiation to 5 x 10(15) n(eq)/cm(2). An operation voltage of only 50V is needed to achieve a 97% hit efficiency after this fluence.
    Download Collect
  • Study of small-cell 3D silicon pixel detectors for the high luminosity LHC

    Curras, E.   Duarte-Campderros, J.   Fernandez, M.   Garcia, A.   Gomez, G.   Gonzalez, J.   Jaramillo, R.   Moya, D.   Vila, I   Hidalgo, S.   Manna, M.   Pellegrini, G.   Quirion, D.   Pitzl, D.   Ebrahimi, A.   Rohe, T.   Wiederkehr, S.  

    A study of 3D pixel sensors of cell size 50 mu m x 50 mu m fabricated at IMB-CNM using double-sided n-on-p 3D technology is presented. Sensors were bump-bonded to the ROC4SENS readout chip. For the first time in such a small-pitch hybrid assembly, the sensor response to ionizing radiation in a test beam of 5.6 GeV electrons was studied. Results for non-irradiated sensors are presented, including efficiency, charge sharing, signal-to-noise, and resolution for different incidence angles.
    Download Collect
  • Recent results on 3D double sided detectors with slim edges

    Pellegrini, G.   Baselga, M.   Christophersen, M.   Ely, S.   Fadeyev, V.   Fleta, C.   Gimenez, A.   Grinstein, S.   Lopez, I.   Lozano, M.   Micelli, A.   Phlips, B. F.   Quirion, D.   Sadrozinski, H. F. -W.   Tsiskaridze, S.  

    This paper reports on the first characterization of double sided 3D silicon radiation pixel detectors with slim edges. These detectors consist of a three-dimensional array of electrodes that penetrate into the detector bulk with the anode and cathode electrodes etched from opposite sides of the substrate. Different detectors were post-processed using the scribe-cleave-passivate (SCP) technology to make "slim edge" sensors. These sensors have only a minimal amount of inactive peripheral region, for the benefit of the construction of large-area tracker and imaging systems. The target application for this work is the use of 3D slim edge detectors for the ATLAS Forward Physics (AFP) CERN Project, where pixel detectors for position resolution and timing detectors for removal of pile up protons, will be placed as close as possible to the beam to detect diffractive protons at 220 m on either side of the ATLAS interaction point. For this reason the silicon areas should feature the narrowest possible insensitive zone on the sensor edge closest to the beam and withstand high nonuniform irradiation fluences. (C) 2013 Elsevier B.V. All rights reserved.
    Download Collect
  • Recent technological developments on LGAD and iLGAD detectors for tracking and timing applications

    Pellegrini, G.   Baselga, M.   Carulla, M.   Fadeyev, V.   Fernandez-Martinez, P.   Fernandez Garcia, M.   Flores, D.   Galloway, Z.   Gallrapp, C.   Hidalgo, S.   Liang, Z.   Merlos, A.   Moll, M.   Quirion, D.   Sadrozinski, H.   Stricker, M.   Vila, I.  

    This paper reports the latest technological development on the Low Gain Avalanche Detector (LGAD) and introduces a new architecture of these detectors called inverse-LGAD (iLGAD). Both approaches are based on the standard Avalanche Photo Diodes (APD) concept, commonly used in optical and X-ray detection applications, including an internal multiplication of the charge generated by radiation. The multiplication is inherent to the basic n(++)-p(+)-p structure, where the doping profile of the p(+) layer is optimized to achieve high field and high impact ionization at the junction. The LGAD structures are optimized for applications such as tracking or timing detectors for high energy physics experiments or medical applications where time resolution lower than 30 ps is required. Detailed TCAD device simulations together with the electrical and charge collection measurements are presented through this work. (C) 2016 The Authors. Published by Elsevier B.V.
    Download Collect
  • Radiation hardness of small-pitch 3D pixel sensors up to a fluence of 3 x 10(16) n(eq)/cm(2)

    Lange, J.   Giannini, G.   Grinstein, S.   Manna, C. M.   Pellegrini, G.   Quirion, D.   Terzo, S.   Vazquez Furelos, D.  

    Small-pitch 3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC pixel detector upgrades. Prototype 3D sensors with pixel sizes of 50 x 50 and 25 x 100 mu m(2) connected to the existing ATLAS FE-14 readout chip have been produced by CNM Barcelona. Irradiations up to particle fluences of 3 x 10(16) n(eq)/cm(2), beyond the full expected HL-LHC fluences at the end of lifetime, have been carried out at Karlsruhe and CERN. The performance of the 50 x 50 mu m(2) devices has been measured in the laboratory and beam tests at CERN SPS. A high charge collected and a high hit efficiency of 98% were found up to the highest fluence. The bias voltage to reach the target efficiency of 97% at perpendicular beam incidence was found to be about 100 V at 1.4 x 10(16) n(eq)/cm(2) and 150 V at 2.8 x 10(16) n(eq)/cm(2), significantly lower than for the previous IBL 3D generation with larger inter-electrode distance and than for planar sensors. The power dissipation at -25 degrees C and 1.4 x 10(16) n(eq)/cm(2) was found to be 13 mW/cm(2). Hence, 3D pixel detectors demonstrated superior radiation hardness and were chosen as the baseline for the inner layer of the ATLAS HL-LHC pixel detector upgrade.
    Download Collect
  • Gamma irradiation damage on the vertical JFET transistors fabricated at the IMB-CNM

    Fernandez-Martinez, P.   Re, L.   Flores, D.   Hidalgo, S.   Quirion, D.   Ullan, M.  

    A new vertical JFET technology, based on a 3D trenched design, has been developed at the IMB-CNM. These transistors are conceived to work as rad-hard protection switches in the renewed High Voltage powering scheme for the Upgrade ATLAS ITk strip detectors. The first fabricated wafers have been fully characterized and the V-JFET performance is very close to the required specifications, showing excellent agreement with simulations. In this work the performance of the fabricated prototypes is tested under harsh ionizing radiation conditions. The variation of the main figures of merit is evaluated as a function of the Total Ionising Dose (TID) and the impact of different design parameters and fabrication strategies are compared. A final study, performed with the aid of TCAD simulations, is also included to understand the effects of the ionization damage observed on the V-JFET performance.
    Download Collect
1 2 3

Contact

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

Submit Feedback