Baltzell, N.
Egiyan, H.
Ehrhart, M.
Field, C.
Freyberger, A.
Girod, F.-X.
Holtrop, M.
Jaros, J.
Kalicy, G.
Maruyama, T.
McKinnon, B.
Moffeit, K.
Nelson, T.
Odian, A.
Oriunno, M.
Paremuzyan, R.
Stepanyan, S.
Tiefenback, M.
Uemura, S.
Ungaro, M.
Vance, H.
Antonioli, M.A.
Baltzell, N.
Boyarinov, S.
Bonneau, P.
Christo, S.
Cuevas, C.
Defurne, M.
Derylo, G.
Elouadrhiri, L.
Eng, B.
Ewing, T.
Gilfoyle, G.
Gotra, Y.
Leffel, M.
Mandal, S.
Marzolf, B.
McMullen, M.
Merkin, M.
Miller, R.
Raydo, B.
Teachey, W.
Tucker, R.
Ungaro, M.
Yegneswaran, A.
Zana, L.
Ziegler, V.
Dupre, R.
Stepanyan, S.
Hattawy, M.
Baltzell, N.
Hafidi, K.
Battaglieri, M.
Bueltmann, S.
Celentano, A.
De Vita, R.
El Alaoui, A.
El Fassi, L.
Fenker, H.
Kosheleva, K.
Kuhn, S.
Musico, P.
Minutoli, S.
Oliver, M.
Perrin, Y.
Torayev, B.
Voutier, E.
A new Radial Time Projection Chamber (RTPC) was developed at the Jefferson Laboratory to track low-energy nuclear recoils to measure exclusive nuclear reactions, such as coherent deeply virtual Compton scattering and coherent meson production off He-4. In 2009, we carried out these measurements using the CEBAF Large Acceptance Spectrometer (CLAS) supplemented by the RTPC positioned directly around a gaseous He-4 target, allowing a detection threshold as low as 12 MeV for He-4. This article discusses the design, principle of operation, calibration methods and performances of this RTPC.
Baltzell, N.
Egiyan, H.
Ehrhart, M.
Field, C.
Freyberger, A.
Girod, F. -X.
Holtrop, M.
Jaros, J.
Kalicy, G.
Maruyama, T.
McKinnon, B.
Moffeit, K.
Nelson, T.
Odian, A.
Oriunno, M.
Paremuzyan, R.
Stepanyan, S.
Tiefenback, M.
Uemura, S.
Ungaro, M.
Vance, H.
The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e(+)e(-) decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 mu m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.
Fair, R.
Baltzell, N.
Bachimanchi, R.
Biallas, G.
Burkert, V.D.
Campero-Rojas, P.
Elementi, L.
Elouadrhiri, L.
Eng, B.
Ghoshal, P.K.
Hogan, J.
Insley, D.
Kashikhin, V.
Kashy, D.
Krave, S.
Kumar, O.
Laney, M.
Legg, R.
Lagerquist, V.
Lester, M.
Lemon, T.
Lung, A.
Luongo, C.
Matalevich, J.
Mestayer, M.D.
Miller, R.
Moore, W.
Newton, J.
Nobrega, F.
Pastor, O.
Philip, S.
Rajput-Ghoshal, R.
Rao Ganni, V.
Rode, C.
Sandoval, N.
Spiegel, S.
Tilles, D.
Tremblay, K.
Velev, G.
Wilson, C.
Wiseman, M.
Young, G.R.