Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Relativistic reverberation in the accretion flow of a tidal disruption event

Author:
Kara, Erin   Miller, Jon M.   Reynolds, Chris   Dai, Lixin   


Journal:
Nature


Issue Date:
2016


Abstract(summary):

Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating(1); however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe(2). Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole(3), can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet(4-8), but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation(9-12) arising from gravitationally redshifted iron Ka photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more(13). The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought(5,14).


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads