Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Optimal state estimation and fault diagnosis for a class of nonlinear systems

Author:
Kazemi, Hamed  Yazdizadeh, Alireza  


Journal:
IEEE-CAA JOURNAL OF AUTOMATICA SINICA


Issue Date:
2020


Abstract(summary):

This study proposes a scheme for state estimation and, consequently, fault diagnosis in nonlinear systems. Initially, an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault. By utilizing Lyapunov's direct method, the observer is proved to be optimal with respect to a performance function, including the magnitude of the observer gain and the convergence time. The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman (HJB) equation. The approximation is determined via an online trained neural network (NN). Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals. In this case, for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation (FDI). Simulation results of a single-link flexible joint robot (SLFJR) electric drive system show the effectiveness of the proposed methodology.


Page:
517---526


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads