Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Status of the HOLMES Experiment

Author:
Faverzani, M.  Alpert, B.  Balata, M.  Backer, D.  Bennet, D.  Bevilaqua, A.  Biasotti, M.  Borghesi, M.  Ceruti, G.  De Gerone, M.  Dressler, R.  Ferri, E.  Fowler, J.  Gallucci, G.  Gard, J.  Gatti, F.  Giachero, A.  Heinitz, S.  Hilton, G.  Koster, U.  Lusignoli, M.  Mates, J.  Maugeri, E.  Nisi, S.  Nucciotti, A.  Parodi, L.  Pessina, G.  Puiu, A.  Ragazzi, S.  Reintsema, C.  Ribeiro-Gomez, M.  Schmidt, D.  Schumann, D.  Siccardi, F.  Swetz, D.  Ullom, J.  Vale, L.  


Journal:
JOURNAL OF LOW TEMPERATURE PHYSICS


Issue Date:
2020


Abstract(summary):

The absolute neutrino mass is still an unknown parameter in the modern landscape of particle physics. The HOLMES experiment aims at exploiting the calorimetric approach to directly measure the neutrino mass through the kinematic measurement of the decay products of the weak process decay of Ho-163. This low energy decaying isotope, in fact, undergoes electron capture emitting a neutrino and leaving the daughter atom, Dy-16*, in an atomic excited state. This, in turn, relaxes by emitting electrons and, to a considerably lesser extent, photons. The high-energy portion of the calorimetric spectrum of this decay is affected by the non-vanishing neutrino mass value. Given the small fraction of events falling within the region of interest, to achieve a high experimental sensitivity on the neutrino mass, it is important to have a high activity combined with a very small undetected pileup contribution. To achieve these targets, the final configuration of HOLMES foresees the deployment of a large number of Ho-163 ion-implanted TESs characterized by an ambitiously high activity of 300 Hz each. In this paper, we outline the status of the major tasks that will bring HOLMES to achieve a statistical sensitivity on the neutrino mass as low as 2 eV/c(2).


Page:
1098---1106


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads