Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Removal effect of the low-low temperature electrostatic precipitator on polycyclic aromatic hydrocarbons.

Journal:
Chemosphere


Issue Date:
2018


Abstract(summary):

The low-low temperature electrostatic precipitator (LLT-ESP) is one of the most used devices for pollutant control in ultra-low emission coal-fired power plants. This study investigated the influence of the LLT-ESP on polycyclic aromatic hydrocarbons (PAHs) distributions in flue gas from an ultra-low emission coal-fired power plant. The total gas-phase PAH concentration was reduced from 27.52=E2=80=AFmug/m3 to 3.38=E2=80=AFmug/m3. The total particulate-phase PAH concentration decreased from 14.36=E2=80=AFmug/m3 to 0.34=E2=80=AFmug/m3. The removal efficiency of the LLT-ESP for gas-phase and particulate phase carcinogenic higher molecular weight (HMW) PAHs was 85% and 99%, respectively. The total concentration of 16 selected PAHs in feed coal was 98.16=E2=80=AFmug/g. The fly ash particle size successively decreased from Electric Field 1 (F1) to Electric Field 4 (F4). The total PAH concentration decreased from F1 to F2 but increased again from F3 to F4. The flue gas cooling process significantly contributed to the elimination of both gas- and particulate-phase PAHs in the flue gas. Presumably, most of the condensed PAHs were adhered to or absorbed in the fly ash and were scavenged in Field 1. Both gas- and particulate-phase 5- and 6-ring PAHs in the flue gas were completely removed in Field 1. The discharge process in the electric fields may promote the formation of several 4- or 5-ring PAHs. In this study, benzo[k]fluoranthene (BKF) and benzo[a]pyrene (BaP) were regenerated in the particles rather than in the flue gas during the discharge process in the electric fields. Copyright =C2=A9 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads