Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Exploring the underwater silken architectures of caddisworms:comparative silkomics across two caddisfly suborders

Author:
Frandsen, Paul B.  Bursell, Madeline G.  Taylor, Adam M.  Wilson, Seth B.  Steeneck, Amy  Stewart, Russell J.  


Journal:
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES


Issue Date:
2019


Abstract(summary):

Caddisfly (Trichoptera) larvae assemble a variety of underwater structures using bioadhesive silk. The order is divided into two primary sub-orders distinguished by how the larvae deploy their silk. Foraging Integripalpia larvae construct portable tube cases. Annulipalpia larvae construct stationary retreats, some with suspended nets to capture food. To identify silk molecular adaptations that may have contributed to caddisfly diversification, we report initial characterization of silk from a net-spinner genus, Parapsyche, for comparison with the silk of a tube case-maker genus, Hesperophylax. Overall, general features of silk structure and processing are conserved across the sub-orders despite approximately 200 Ma of divergence: the H-fibroin proteins comprise repeating phosphoserine-rich motifs, naturally spun silk fibres contain approximately 1 : 1 molar ratios of divalent metal ions to phosphate, silk fibre precursors are stored as complex fluids of at least two types of complexes, and silk gland proteins contain only traces of divalent metal ions, suggesting metal ions that solidify the fibres are absorbed from the aqueous environment after silk extrusion. However, the number and arrangement of the repeating phosphoserine blocks differ between genera, suggesting molecular adaptation of H-fibroin through duplication and shuffling of conserved structural modules may correspond with the radiation of caddisflies into diverse environments. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads