Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Assessment of the Impacts of Land Use/Cover Change and Rainfall Change on Surface Runoff in China

Author:
Li, Fazhi  Chen, Jingqiu  Liu, Yaoze  Xu, Peng  Sun, Hua  Engel, Bernard A.  Wang, Shizhong  


Journal:
SUSTAINABILITY


Issue Date:
2019


Abstract(summary):

Assessment of the impacts of land use/cover change (LUCC) and rainfall change on surface runoff depth can help provide an understanding of the temporal trend of variation of surface runoff and assist in urban construction planning. This study evaluated the impacts of LUCC and rainfall change on surface runoff depth by adopting the well-known Soil Conservation Service-Curve Number (SCS-CN) method and the widely used Long-Term Hydrologic Impact Assessment (L-THIA) model. National hydrologic soil group map of China was generated based on a conversion from soil texture classification system. The CN values were adjusted based on the land use/cover types and soil properties in China. The L-THIA model was configured by using the adjusted CN values and then applied nationally in China. Results show that nationwide rainfall changes and LUCC from 2005 to 2010 had little impact on the distribution of surface runoff, and the high values of runoff depth were mainly located in the middle and lower reaches of the Yangtze River. Nationally, the average annual runoff depths in 2005, 2010 and 2015 were 78 mm, 83 mm and 90 mm, respectively. For the 2015 land use data, rainfall change caused the variation of surface runoff depth ranging from -203 mm to 476 mm in different regions. LUCC from 2005 to 2015 did not cause obvious change of surface runoff depth, but expansion of developed land led to runoff depth increases ranging from 0 mm to 570 mm and 0 mm to 742 mm from 2005 to 2010 and 2010 to 2015, respectively. Potential solutions to urban land use change and surface runoff control were also analyzed.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads