Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Bond graph modeling of a jet engine with electric starter

Author:
Montazeri-Gh, Morteza  Fashandi, Seyed Alireza Miran  


Journal:
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING


Issue Date:
2019


Abstract(summary):

Following the technological advances in recent decades, advanced electronic systems linked to the gas turbine industry are increasingly considered by the designers of this field. For this purpose, new airborne systems in conjunction with jet engines are developed, which are incorporated in many challenging design problems such as control law and configuration design. Thus, a comprehensive modeling structure is needed that can bolster the integrity of the system development such as the bond graph approach, which is known as an efficient method for modeling complicated mechatronic systems. In this paper, modeling and simulation of a jet engine dynamic performance and aircraft motion are achieved based on the bond graph approach. At first, the electric starter bond graph model is constructed and physical relationships governing each engine component are obtained. In the aftermath, the modulated energy fields are developed for the jet engine components. Subsequently, the bond graph model of the engine is numerically simulated and experimentally tested and verified for a small jet engine. Finally, bond graph modeling and simulation of integrated engine and aircraft system is presented. The test results indicate the acceptable accuracy of the modeling approach which can be applied for innovative diagnosis and control systems design.


Page:
3193---3210


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads