Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Structure of Active Sites of Fe-N-C Nano-Catalysts for Alkaline Exchange Membrane Fuel Cells

Author:
Kishi, Hirofumi  Sakamoto, Tomokazu  Asazawa, Koichiro  Yamaguchi, Susumu  Kato, Takeshi  Zulevi, Barr  Serov, Alexey  Artyushkova, Kateryna  Atanassov, Plamen  Matsumura, Daiju  Tamura, Kazuhisa  Nishihata, Yasuo  Tanaka, Hirohisa  


Journal:
NANOMATERIALS


Issue Date:
2018


Abstract(summary):

Platinum group metal-free (PGM-free) catalysts based on transition metal-nitrogen-carbon nanomaterials have been studied by a combination of ex situ and in situ synchrotron X-ray spectroscopy techniques; high-resolution Transmission Electron Microscope (TEM); Mossbauer spectroscopy combined with electrochemical methods and Density Functional Theory (DFT) modeling/theoretical approaches. The main objective of this study was to correlate the HO2- generation with the chemical nature and surface availability of active sites in iron-nitrogen-carbon (Fe-N-C) catalysts derived by sacrificial support method (SSM). These nanomaterials present a carbonaceous matrix with nitrogen-doped sites and atomically dispersed and; in some cases; iron and nanoparticles embedded in the carbonaceous matrix. Fe-N-C oxygen reduction reaction electrocatalysts were synthesized by varying several synthetic parameters to obtain nanomaterials with different composition and morphology. Combining spectroscopy, microscopy and electrochemical reactivity allowed the building of structure-to-properties correlations which demonstrate the contributions of these moieties to the catalyst activity, and mechanistically assign the active sites to individual reaction steps. Associated with Fe-N-x motive and the presence of Fe metallic particles in the electrocatalysts showed the clear differences in the variation of composition; processing and treatment conditions of SSM. From the results of material characterization; catalytic activity and theoretical studies; Fe metallic particles (coated with carbon) are main contributors into the HO2- generation.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads