Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

A probabilistic framework for comparison of dam breach parameters and outflow hydrograph generated by different empirical prediction methods

Author:
Ahmadisharaf, Ebrahim  Kalyanapu, Alfred J.  Thames, Brantley A.  Lillywhite, Jason  


Journal:
ENVIRONMENTAL MODELLING & SOFTWARE


Issue Date:
2016


Abstract(summary):

This study presents a probabilistic framework to simulate dam breach and evaluates the impact of using four empirical dam breach prediction methods on breach parameters (i.e., geometry and timing) and outflow hydrograph attributes (i.e., time to peak, hydrograph duration and peak). The methods that are assessed here include MacDonald and Langridge-Monopolis (1984), Von Thun and Gillette (1990), Froehlich (1995), 2008). Mean values and percentiles of breach parameters and outflow hydrograph attributes are compared for hypothetical overtopping failure of Burnett Dam in the state of North Carolina, USA. Furthermore, utilizing the probabilistic framework, the least and most uncertain methods alongside those giving the most critical value are identified for these parameters. The multivariate analysis also indicates that lone use of breach parameters is not necessarily sufficient to characterize outflow hydrograph attributes. However, timing characteristic of the breach is generally a more important driver than its geometric features. (C) 2016 Elsevier Ltd. All rights reserved.


Page:
248---263


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads