Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Mitigation of tight junction protein dysfunction in lung microvascular endothelial cells with pitavastatin

Author:
Suzuki, Rioto  Nakamura, Yutaka  Chiba, Shinji  Mizuno, Tomoki  Abe, Kazuyuki  Horii, Yosuke  Nagashima, Hiromi  Tanita, Tatsuo  Yamauchi, Kohei  


Journal:
PULMONARY PHARMACOLOGY & THERAPEUTICS


Issue Date:
2016


Abstract(summary):

Background: Statin use in individuals with chronic obstructive pulmonary disease (COPD) with coexisting cardiovascular disease is associated with a reduced risk of exacerbations. The mechanisms by which statin plays a role in the pathophysiology of COPD have not been defined. To explore the mechanisms involved, we investigated the effect of statin on endothelial cell function, especially endothelial cell tight junctions. Method: We primarily assessed whether pitavastatin could help mitigate the development of emphysema induced by continuous cigarette smoking (CS) exposure. We also investigated the activation of liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling, which plays a role in maintaining endothelial functions, important tight junction proteins, zonula occludens (ZO)-1 and claudin-5 expression, and lung microvascular endothelial cell permeability. Results: We found that pitavastatin prevented the CS-induced decrease in angiomotin-like protein I (AmotL1)-positive vessels via the activation of LKB1/AMPK signaling and IFN-gamma-induced hyper permeability of cultured human lung microvascular endothelial cells by maintaining the levels of AmotL1, ZO-1, and claudin-5 expression at the tight junctions. Conclusion: Our results indicate that the maintenance of lung microvascular endothelial cells by pitavastatin prevents tight junction protein dysfunctions induced by CS. These findings may ultimately lead to new and novel therapeutic targets for patients with COPD. (C) 2016 Elsevier Ltd. All rights reserved.


Page:
27---35


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads