Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

The engine reformer:Syngas production in an engine for compact gas-to-liquids synthesis

Author:
Lim, Emmanuel G.  Dames, Enoch E.  Cedrone, Kevin D.  Acocella, Angela J.  Needham, Thomas R.  Arce, Andrea  Cohn, Daniel R.  Bromberg, Leslie  Cheng, Wai K.  Green, William H.  


Journal:
CANADIAN JOURNAL OF CHEMICAL ENGINEERING


Issue Date:
2016


Abstract(summary):

Methane (CH4) reforming was carried out in an internal combustion engine (an engine reformer). We successfully produced syngas from the partial oxidation of natural gas in the cylinder of a diesel engine that was reconfigured to perform spark ignition. Performing the reaction in an engine cylinder allows some of the exothermicity to be captured as useful work. Intake conditions of 110kPa and up to 480 degrees C allowed low cycle-to-cycle variability (COVnimep <20%) at methane-air equivalence ratios (phi(M)) of 2.0, producing syngas with an H-2-to-CO ratio of 1.4. Spark ignition timing was varied between 45-30 degrees before top-dead-center (BTDC) piston position, showing significant improvement with delayed timing. Hydrogen (H-2) and ethane (C2H6) were added to simulate recycle from a downstream synthesis reactor and realistic natural gas compositions, respectively. Adding these gases yielded a stable combustion up to hydrocarbon-air equivalence ratios (phi(HC)) of 2.8 with COVnimep<5%. Ethane concentrations (with respect to methane) of up to 0.2L/L (20vol%) (with and without H-2) produced robust and stable combustions, demonstrating that the engine can be operated across a range of natural gas compositions. Engine exhaust soot concentrations demonstrated elevated values at phi(HC)>2.4, but <1mg/L below these equivalence ratios. These results demonstrate that the engine reformer could be a key component of a compact gas-to-liquids synthesis plant by highlighting the operating conditions under which high gas conversion, high H(2-)to-CO ratios close to 2.0, and low soot production are possible.


Page:
623---635


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads