Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage

Author:
Sun, Wenping  Rui, Xianhong  Yang, Dan  Sun, Ziqi  Li, Bing  Zhang, Wenyu  Zong, Yun  Madhavi, Srinivasan  Dou, Shixue  Yan, Qingyu  


Journal:
ACS NANO


Issue Date:
2015


Abstract(summary):

Sodium-ion batteries (SIBs) are considered as complementary alternatives to lithium-ion batteries for grid energy storage due to the abundance of sodium. However, low capacity, poor rate capability, and cycling stability of existing anodes significantly hinder the practical applications of SIBs. Herein, ultrathin two-dimensional SnS2 nanosheets (3-4 nm in thickness) are synthesized via a facile refluxing process toward enhanced sodium storage. The SnS2 nanosheets exhibit a high apparent diffusion coefficient of Na+ and fast sodiation/desodiation reaction kinetics. In half-cells, the nanosheets deliver a high reversible capacity of 733 mAh g(-1) at 0.1 A g(-1), which still remains up to 435 mAh g(-1) at 2 A g(-1). The cell has a high capacity retention of 647 mA h g(-1) during the 50th cycle at 0.1 A g(-1), which is by far the best for SnS2, suggesting that nanosheet morphology is beneficial to improve cycling stability in addition to rate capability. The SnS2 nanosheets also show encouraging performance in a full cell with a Na3V2(PO4)(3) cathode. In addition, the sodium storage mechanism is investigated by ex situ XRD coupled with high-resolution TEM. The high specific capacity, good rate capability, and cycling durability suggest that SnS2 nanosheets have great potential working as anodes for high-performance SIBs.


Page:
11371---11381


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads