Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural Network-Based Super-Resolution Algorithm

Author:
Li, Linyi  Xu, Tingbao  Chen, Yun  


Journal:
REMOTE SENSING


Issue Date:
2016


Abstract(summary):

Urban flooding is a serious natural hazard to many cities all over the world, which has dramatic impacts on the urban environment and human life. Urban flooding mapping has practical significance for the prevention and management of urban flood disasters. Remote sensing images with high temporal resolutions are widely used for urban flooding mapping, but have a limitation of relatively low spatial resolutions. In this study, a new method based on a generalized regression neural network (GRNN) is proposed to achieve improved accuracy in super-resolution mapping of urban flooding (SMUF) from remote sensing images. The GRNN-SMUF algorithm was proposed and then assessed using Landsat 5 and Landsat 8 images of Brisbane city in Australia and Wuhan city in China. Compared to three traditional methods, GRNN-SMUF mapped urban flooding more accurately according to both visual and quantitative assessments. The results of this study will improve the accuracy of urban flooding mapping using easily-available remote sensing images with medium-low spatial resolutions and will be propitious to the prevention and management of urban flood disasters.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads