Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Time-adaptive support vector data description for nonstationary process monitoring

Author:
Lee, Seulki  Kim, Seoung Bum  


Journal:
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE


Issue Date:
2018


Abstract(summary):

Statistical process control techniques are widely used for quality control to monitor the stability of a process over time. In modem manufacturing systems with complex and variable processes, appropriate control chart techniques that can efficiently address nonnormal processes are required. Furthermore, in real manufacturing environments, process changes occur frequently because of various factors such as product and setpoint changes, catalyst degradation, seasonal variations, and sensor drift. However, conventional control chart schemes cannot necessarily accommodate all possible future conditions of a process because they are formulated based on information recorded in the early stages of the process. Several attempts have been made to accommodate process changes over time. In the present paper, we propose a time-adaptive support vector data description based control chart that can address not only nonnormal in-control observations, but also time-varying processes. The effectiveness and applicability of the proposed chart was demonstrated through experiments with simulated data and real data from the metal frame process in mobile device manufacturing. (C) 2017 Elsevier Ltd. All rights reserved.


Page:
18---31


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads