Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Diode-like gel polymer electrolytes for full-cell lithium ion batteries

Author:
Lin, Yong-Yi  Chen, Yen-Ming  Hou, Sheng-Shu  Jan, Jeng-Shiung  Lee, Yuh-Lang  Teng, Hsisheng  


Journal:
JOURNAL OF MATERIALS CHEMISTRY A


Issue Date:
2017


Abstract(summary):

This study designs a positive-intrinsic-negative (PIN)-diode-like gel polymer electrolyte (GPE) for a full-cell graphite vertical bar electrolyte vertical bar LiFePO4 lithium ion battery to facilitate interfacial ion transfer at both the anode and cathode. The diode-like GPE comprises an intrinsic poly(acrylonitrile-co-methylacrylate)-hosted electrolyte layer, as well as positive and negative layers that are synthesized by doping the intrinsic layer with TiO2 and SiO2 nanoparticles, which respectively exhibits positive and negative zeta potentials. The positive layer that adsorbs PF6- anions is in contact with the LiFePO4 cathode of the battery to facilitate the transfer of Li+ cations across the interface. The negative layer, which is in contact with the graphite anode, adsorbs Li+ cations to suppress accumulation and prevent the intercalation of solvated Li+ into the graphitic framework. The intrinsic layer acts as a neutralization zone to lower the current-rectification effect of the p-n junction. This PIN-configuration design for electrolytes enhances the ultimate capacity of the full-cell battery, exhibits high rate capacity retention, and increases the life-span (87% capacity retained after 500 charge-discharge cycles).


Page:
17476---17481


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads