Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

The Hamburg/ESO R-process Enhanced Star survey (HERES)

Author:
Hill, V.  Christlieb, N.  Beers, T. C.  Barklem, P. S.  Kratz, K. -L.  Nordstrom, B.  Pfeiffer, B.  Farouqi, K.  


Journal:
ASTRONOMY & ASTROPHYSICS


Issue Date:
2017


Abstract(summary):

We report an abundance analysis for the highly r-process-enhanced (r-II) star CS 29497-004, a very metal-poor giant with solar system T-eff =3D 5013 K and [Fe/H] =3D -2 : 85, whose nature was initially discovered in the course of the HERES project. Our analysis is based on high signal-to-noise ratio, high-resolution (R similar to 75 000) VLT/UVES spectra and MARCS model atmospheres under the assumption of local thermodynamic equilibrium, and obtains abundance measurements for a total of 46 elements, 31 of which are neutron-capture elements. As is the case for the other similar to 25 r-II stars currently known, the heavy-element abundance pattern of CS 29497-004 well-matches a scaled solar system second peak r-process-element abundance pattern. We confirm our previous detection of Th, and demonstrate that this star does not exhibit an "actinide boost". Uranium is also detected (log is an element of (U) =3D -2 : 20 +/- 0 : 30), albeit with a large measurement error that hampers its use as a precision cosmo-chronometer. Combining the various elemental chronometer pairs that are available for this star, we derive a mean age of 12 : 2 +/- 3 : 7 Gyr using the theoretical production ratios from published waitingpoint approximation models. We further explore the high-entropy wind model (Farouqi et al. 2010, ApJ, 712, 1359) production ratios arising from different neutron richness of the ejecta (Y-e), and derive an age of 13 : 7 +/- 4 : 4 Gyr for a best-fitting Y-e =3D 0 : 447. The U/Th nuclei-chronometer is confirmed to be the most resilient to theoretical production ratios and yields an age of 16 : 5 +/- 6 : 6 Gyr. Lead (Pb) is also tentatively detected in CS 29497-004, at a level compatible with a scaled solar r-process, or with the theoretical expectations for a pure r-process in this star.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads