Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Octadecyl functionalized core–shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites

Author:
Zheng Qiao  Rosa Perestrelo  Emilia M. Reyes-Gallardo  R. Lucena  S. Cárdenas  João Rodrigues  José S. Câmara  


Journal:
Journal of Chromatography A


Issue Date:
2015


Abstract(summary):

Highlights • Evaluation of functionalized magnetic nanoparticles Fe 3 O 4 @SiO 2 -C18 as a nanosorbent. • Reported for the first time as innovative strategy to isolate urinary EVOMs. • Attractive, promising and reliable alternative to commonly used methods. • Good results for selectivity, linearity, precision, accuracy and matrix effect. • Rapid screening for quantification of urinary EVOMs. Abstract In this present study, magnetic Fe 3 O 4 @SiO 2 nanoparticles (MNPs) functionalized with octadecyl groups (Fe 3 O 4 @SiO 2 -C 18 NPs) were synthesized, characterized and employed, for the first time, as powerful nanosorbent to extract endogenous volatile organic metabolites (EVOMs) namely, hexanal, heptanal, decanal, benzaldehyde, 4-heptanone, 5-methyl-2-furfural and phenol, described as potential biomarkers of cancer, from human urine. By using co-precipitation, surface modification methods, the carbon-ferromagnetic nanocomposite was synthesized and characterized by infrared spectrum (IR) and transmission electron microscopy (TEM). By coupling with gas chromatography–mass spectrometry (GC–qMS), a reliable, sensitive and cost-effective method was validated. To test the extraction efficiency of the carbon-ferromagnetic nanocomposite toward urinary EVOMs experimental variables affecting the extraction performance, including nanosorbent amount, adsorption time, elution time, and nature of elution solvent, were investigated in detail. The extraction process was performed by dispersing Fe 3 O 4 @SiO 2 -C18 NPs into working solution containing targeted VOMs, and into urine samples, and then eluted with an adequate organic solvent. The eluate was collected, concentrated and analyzed by GC–qMS. Under the optimized conditions, the LODs and LOQs achieved were in the range of 9.7–57.3 and 32.4–190.9 ng/mL, respectively. Calibration curves were linear ( r 2 ≥ 0. 988) over the concentration ranges from 0.25 to 250 ng/mL. In addition, a satisfying reproducibility was achieved by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 3 and 11%, respectively. The method also afforded satisfactory results in terms of the matrix effect (72.8–96.1%) and recoveries (accuracy) higher than 75.1% for most of the studied EVOMs. The Fe 3 O 4 @SiO 2 -C 18 NPs-based sorbent extraction combined with GC–qMS revealed that the new nanosorbent had a strong ability to retain the target metabolites providing a new, reliable and high throughput strategy for isolation of targeted EVOMs in human urine, suggesting their potential to be applied in other EVOMs.


Page:
18-18


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads