Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia

Author:
Temesgen Gashaw  Taffa Tulu  Mekuria Argaw  Abeyou W. Worqlul  


Journal:
Science of The Total Environment


Issue Date:
2018


Abstract(summary):

Abstract Understanding the hydrological response of a watershed to land use/land cover (LULC) changes is imperative for water resources management planning. The objective of this study was to analyze the hydrological impacts of LULC changes in the Andassa watershed for a period of 1985–2015 and to predict the LULC change impact on the hydrological status in year 2045. The hybrid land use classification technique for classifying Landsat images (1985, 2000 and 2015); Cellular-Automata Markov (CA-Markov) for prediction of the 2030 and 2045 LULC states; the Soil and Water Assessment Tool (SWAT) for hydrological modeling were employed in the analyses. In order to isolate the impacts of LULC changes, the LULC maps were used independently while keeping the other SWAT inputs constant. The contribution of each of the LULC classes was examined with the Partial Least Squares Regression (PLSR) model. The results showed that there was a continuous expansion of cultivated land and built-up area, and withdrawing of forest, shrubland and grassland during the 1985–2015 periods, which are expected to continue in the 2030 and 2045 periods. The LULC changes, which had occurred during the period of 1985 to 2015, had increased the annual flow (2.2%), wet seasonal flow (4.6%), surface runoff (9.3%) and water yield (2.4%). Conversely, the observed changes had reduced dry season flow (2.8%), lateral flow (5.7%), groundwater flow (7.8%) and ET (0.3%). The 2030 and 2045 LULC states are expected to further increase the annual and wet season flow, surface runoff and water yield, and reduce dry season flow, groundwater flow, lateral flow and ET. The change in hydrological components is a direct result of the significant transition from the vegetation to non-vegetation cover in the watershed. This suggests an urgent need to regulate the LULC in order to maintain the hydrological balance. Graphical abstract Image 2 Highlights • There were expansions of cultivated land and built-up area, and withdrawing of forest, shrubland and grassland during the 1985–2015 periods, which are expected to continue in the 2030 and 2045 periods. • The LULC changes, which had occurred during the period of 1985 to 2015, had increased the annual and wet season flow, surface runoff and water yield while the dry season flow, lateral flow, groundwater flow and ET were reduced. • The 2030 and 2045 LULC states are expected to affect the hydrological components with the same direction.


Page:
1394-1394


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads