Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Prototyping a High-Frequency Inductive Magnetic Sensor Using the Nonconventional, Low-Temperature Co-Fired Ceramic Technology for Use in ITER

Author:
Testa, D.   Fournier, Y.   Maeder, T.   Toussaint, M.   Chavan, R.   Guterl, J.   Lister, J. B.   Moret, J-M.   Schaller, B.   Tonetti, G.  


Journal:
Fusion Science and Technology


Issue Date:
2011


Abstract(summary):

The ITER high-frequency (HF) magnetic sensor is currently intended to be a conventional, Mirnov-type, pickup coil, designed to provide measurements of magnetic instabilities with magnitude as low as vertical bar delta B vertical bar similar to 10(-4) G at the position of the sensors and up to frequencies of at least 300 kHz. Previous prototyping of this sensor has indicated that a number of problems exist with this conventional design that are essentially related to the winding process and the differential thermal expansion between the metallic wire and the ceramic spacers. Hence, a nonconventional HF magnetic sensor has been designed and prototyped in-house in different variants using low-temperature co-fired ceramic (LTCC) technology, which involves a series of stacked ceramic substrates with a circuit board printed on them with a metallic ink (silver in our case). A method has then been developed to characterize the electrical properties of these sensors from the direct-current range up to frequencies in excess of 10 MHz. This method has been successfully bench-marked against the measurements for the built sensors and allows the electrical properties of LTCC prototypes to be predicted with confidence and without the need of actually building them, which therefore significantly simplifies future research and development (R&D) activities. When appropriate design choices are made, LTCC sensors are found to meet in full the volume occupation constraints and the requirements for the sensor's electrical properties that are set out for the ITER HF magnetic diagnostic system. This nonconventional technology is therefore recommended for further R&D and prototyping work, particularly for a three-dimensional sensor, and possibly using materials more suitable for use in the ITER environment, such as palladium and platinum inks, which could remove the perceived risk of transmutation under the heavy neutron flux that we may have with the Au (to Hg, then to Pb) or the Ag (to Cd) metallic inks currently used in LTCC devices.


Page:
376-396


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads