Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage

Author:
McMahon, C. J.   Hopkins, S.   Vail, A.   King, A. T.   Smith, D.   Illingworth, K. J.   Clark, S.   Rothwell, N. J.   Tyrrell, P. J.  


Journal:
Journal of NeuroInterventional Surgery


Issue Date:
2013


Abstract(summary):

Background The mechanism of development of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (SAH) is poorly understood. Inflammatory processes are implicated in the development of ischemic stroke and may also predispose to the development of DCI following SAH. The objective of this study was to test whether concentrations of circulating inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6) and interleukin 1 receptor antagonist (IL-1Ra)) were predictive for DCI following SAH. Secondary analyses considered white cell count (WCC) and erythrocyte sedimentation rate (ESR). Methods This was a single-center case-control study nested within a prospective cohort. Plasma inflammatory markers were measured in patients up to 15days after SAH (initial, peak, average, final and rate of change to final). Cases were defined as those developing DCI. Inflammatory markers were compared between cases and randomly selected matched controls. Results Among the 179 participants there were 46 cases of DCI (26%). In primary analyses the rate of change of IL-6 was associated with DCI (OR 2.3 (95% CI 1.1 to 5.0); p=0.03). The final value and rate of change of WCC were associated with DCI (OR 1.2 (95% CI 1.0 to 1.3) and OR 1.3 (95% CI 1.0 to 1.6), respectively). High values of ESR were associated with DCI (OR 2.4 (95% CI 1.3 to 4.6) initial; OR 2.3 (95% CI 1.3 to 4.2) average; OR 2.1 (95% CI 1.1 to 3.9) peak; and OR 2.0 (95% CI 1.2 to 3.3) final value). Conclusions Leucocytosis and change in IL-6 prior to DCI reflect impending cerebral ischemia. The time-independent association of ESR with DCI after SAH may identify this as a risk factor. These data suggest that systemic inflammatory mechanisms may increase the susceptibility to the development of DCI after SAH.


Page:
512-517


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads