Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Enzyme-mediated fabrication of an oxidized chitosan hydrogel as a tissue sealant

Author:
Phuong, N. T.   Anh Ho, V.   Hai Nguyen, D.   Khoa, N. C.   Quyen, T. N.   Lee, Y.   Park, K. D.  


Journal:
Journal of Bioactive and Compatible Polymers


Issue Date:
2015


Abstract(summary):

Oxidized polysaccharide-based hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility and tissue-adhesive property. In this study, we introduce a new type of chitosan-based hydrogel as a tissue sealant, which was prepared by enzymatic mediation from periodate-oxidized chitosan–polyethylene glycol–tyramine. The oxidized chitosan backbone was expected to enhance the interconnection between the hydrogel layer and collagen in the tissues via the Schiff-base reaction. Proton nuclear magnetic resonance spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the oxidized chitosan. The degree of oxidation of the chitosan backbone was around 14% of the glucosamine units by proton nuclear magnetic resonance. The hydrogel was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with live/dead cell assays showed that the oxidized chitosan-based hydrogel was cytobiocompatible. The hydrogel exhibited high tissue adhesion strength on porcine skin models as well as good tissue-adhesive ability and wound healing properties on rabbit skin. These positive results could be promising for the application of oxidized chitosan-based hydrogels as a wound sealant.



Page:
412-423


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads