Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Effects of land use/cover change on land surface energy partitioning and climate in Northeast China

Author:
Liu, Fengshan   Tao, Fulu   Liu, Jiyuan   Zhang, Shuai   Xiao, Dengpan   Wang, Meng   Zhang, He   Bai, Huizi  


Journal:
Theoretical and Applied Climatology


Issue Date:
2016


Abstract(summary):

The Simple Biosphere Model (SiB2) and the 2 × 2 km resolution National Land use/Land Cover database were used to investigate the effects of Land Use/Cover Change (LUCC) on land surface energy balance and climate in Jilin Province, northeast China, from 1990 to 2005. The spatial patterns of the components of surface energy balance (i.e., net radiation (R n), latent heat (LH), sensible heat (SH), and albedo (α)) and climate (i.e., canopy temperature (T c), diurnal temperature range (DTR)), as well as the roles of land cover type in variations of energy balance and climate, were investigated. The results showed that there were general similar trends in R n, LH, SH, and α in the LUCC process. The spatial patterns of T c and DTR also showed consistent relationships with LUCC processes. Leaf area index (LAI) and canopy conductance (g c) were found to be the key factors in controlling the spatial patterns of the components of surface energy balance and T c. Using linear correlation method, the gaps of the components of surface energy balance were well-explained by the differences of LAI and g c, and R n had a better correlation with T c and DTR, in the process of LUCC. The surface energy partitioning of R n into LH and SH could not only dampen or strengthen the temperature difference, but also change the relative size of albedo-based R n when the albedo gap was small, between land cover types.


Page:
141-150


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads