Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Analysis of the Salt Retention of Nanofiltration Membranes Using the Donnan–Steric Partitioning Pore Model

Author:
SCHAEP, JOHAN   VANDECASTEELE, CARLO   MOHAMMAD, A. WAHAB   BOWEN, W. RICHARD  


Journal:
Separation Science and Technology


Issue Date:
1999


Abstract(summary):

The performance of four commercial nanofiltration membranes was analyzed by the Donnan-steric partitioning pore model (DSPM) that describes solute transport through a membrane using the extended Nernst-Planck equation. Retention measurements were carried out as a function of the permeate flux for uncharged solutes, which allowed characterization of the membranes in terms of an effective membrane pore radius and the ratio of an effective membrane thickness to the porosity. Retention measurements with single salt solutions of NaCl, Na(2)SO(4), MgCl(2), and MgSO(4) clearly showed the effect of ion concentration and ion valence on the retention. The DSPM model was used to evaluate the effective membrane charge density by analyzing the retention of single salt solutions. The analysis showed that the charge density is not constant but depends very much on the salt and its concentration. This is attributed to ion adsorption on the membrane material. For magnesium salts this could lead to a positive membrane charge. This phenomenon was found for each of the membrane materials.


Page:
3009-3030


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads