Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Adsorption of Ni, Pd, Pt, Cu, Ag and Au on the Fe3O4(111) surface

Author:
Yu, Xiaohu   Tian, Xinxin   Wang, Shengguang  


Journal:
Surface Science


Issue Date:
2014


Abstract(summary):

The interaction of Group 10 and 11 transition metals with the magnetite (111) surface has been investigated using the GGA + U density functional theory and periodic slab surface models. It was found that these transition metals adsorb stronger on an oxygen-terminated magnetite (111) surface than on an iron-terminated surface. On an oxygen-terminated surface, the adsorption strength is in the order of Ni > Pt similar to Cu > Pd > Ag similar to Au. In contrast the order on an iron-terminated surface is Ni > Pt - Cu > Au > Pd similar to Ag. The adsorption strength was found to correlate well with the average lengths of metal-oxygen bonds. The magnetite (111) surfaces largely modify the electronic structures of the transition metals. Compared to their density of states in bulk structures, the atomically adsorbed transition metals have narrower d bands, and their d-band centers are closer to the Fermi levels. This implies the higher activities of the atomically adsorbed transition metals. (C) 2014 Elsevier B.V. All rights reserved.


Page:
141-147


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads