Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Author:
Lakshmanan, Manu N.   Harrawood, Brian P.   Agasthya, Greeshma A.   Kapadia, Anuj J.  


Journal:
IEEE Transactions on Medical Imaging


Issue Date:
2014


Abstract(summary):

Here, we present an innovative imaging technology for breast cancer using gamma-ray stimulated spectroscopy based on the nuclear resonance fluorescence (NRF) technique. In NRF, a nucleus of a given isotope selectively absorbs gamma rays with energy exactly equal to one of its quantized energy states, emitting an outgoing gamma ray with energy nearly identical to that of the incident gamma ray. Due to its application of NRF, gamma-ray stimulated spectroscopy is sensitive to trace element concentration changes, which are suspected to occur at early stages of breast cancer, and therefore can be potentially used to noninvasively detect and diagnose cancer in its early stages. Using Monte-Carlo simulations, we have designed and demonstrated an imaging system that uses gamma-ray stimulated spectroscopy for visualizing breast cancer. We show that gamma-ray stimulated spectroscopy is able to visualize breast cancer lesions based primarily on the differences in the concentrations of trace elements between diseased and healthy tissue, rather than differences in density that are crucial for X-ray mammography. The technique shows potential for early breast cancer detection; however, improvements are needed in gamma-ray laser technology for the technique to become a clinically feasible method of detecting and diagnosing cancer at early stages.


Page:
546-555


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads