Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring

Author:
Tang, Huiming   Li, Changdong   Hu, Xinli   Su, Aijun   Wang, Liangqing   Wu, Yiping   Criss, Robert   Xiong, Chengren   Li, Yunan  


Journal:
Landslides


Issue Date:
2015


Abstract(summary):

Huangtupo landslide, volumetrically the largest, most complex landslide in the Three Gorges Reservoir region of China, is a dangerous mass on which the district of Badong has been inadvertently situated. Risk remediation efforts include the construction of a large observational tunnel and monitoring system that are unique in the world. This tunnel and its side branches permit detailed mapping of its 3D structure while providing samples for laboratory analysis. The new investigations validate that the Huangtupo landslide is a composite of several independent landslides and that movement occurs along the major rupture zones as well as on interlayer sliding zones in the underlying Badong Formation. Uranium–thorium disequilibrium dating establishes that the northern part of the landslide, called the Riverside Slump, underwent at least two periods of movement at about 100 and 40 ka (ka stands for a thousand years). These events were induced by the steep slope created by the downcutting of the Yangzte River. The results from in situ displacement monitoring over a 7-year period confirm that the central part of the landslide is creeping at a slow, relatively stable rate of about 15 mm/year rather than being in a stage of acceleration under the protection of anchored concrete beams and other defense structures at its toe. Available data suggest that engineering measures can control the independent landslides that together constitute the huge Huangtupo mass, which will avoid the need for costly relocation of thousands of people.


Page:
511-521


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads