Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Performance of a BOTDR optical fibre sensing technique for crack detection in concrete structures

Author:
Wu, Z. S.   Xu, B.   Takahashi, T.   Harada, T.  


Journal:
Structure and Infrastructure Engineering


Issue Date:
2008


Abstract(summary):

Strain distribution measurements and problematic crack detection are important issues in the damage detection and performance evaluation of concrete, or reinforced concrete, structures. In recent years, the Brillouin Optical Time Domain Reflectometry (BOTDR) based optical fibre sensing technique has attracted great attention as a distributed monitoring method. Current BOTDR instruments are suitable for strain measurements over a certain distance (termed spatial resolution), but damage such as cracks in concrete structures are local. It is crucial to find an effective method to detect local damage in concrete. In this study, two basic optical fibre installation methods, overall bonding (OB) installation and point fixation (PF) installation, are proposed. Then, several unique installation methods (one-round, one-round superposition and two-round superposition) are proposed and investigated experimentally for a reinforced concrete bending beam. The efficiency of the proposed installation methods and the effect of the length of the sensing region on the measurement accuracy are also discussed. Experimental results show that the n-round superposition installation method can effectively and correctly detect the total crack width within a relatively local region. The performance of the overall bonding and point fixation installation methods with different sensing region lengths, or gauge lengths, for local crack initiation and total crack width measurement is also discussed.


Page:
311-323


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads