Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling

Author:
Hemu Wang   Wei Yu   Qingwu Cai  


Journal:
Journal of Materials Processing Technology


Issue Date:
2012


Abstract(summary):

Experiments were performed, under transient conditions, to investigate the heat transfer phenomena of stationary hot steel plate under multiple top circular jets on run-out table. Based on inverse heat conduction model, a two-dimensional finite difference program was developed to calculate the local surface convective heat transfer coefficients and corresponding temperatures. The cooling water jet flow rate was varied from 15L/min to 35L/min and its effect on the convective heat transfer coefficient and surface temperature was analyzed. The results show that heat transfer coefficients are nonlinear functions of surface temperature. The cooling flow rate has no effect on heat transfer coefficient and surface temperature at stagnation point. Within 70mm distance from stagnation line, heat transfer coefficient ratio changes slightly from 0.87 to 0.97. Beyond surface temperature of 350degC, heat transfer coefficient ratio decreases with increasing distance from stagnation line. [All rights reserved Elsevier].


Page:
1825-1831


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads