Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Multi-objective genetic algorithms for cost-effective distributions of actuators and sensors in large structures

Author:
Young-Jin Cha   Anil K. Agrawal   Yeesock Kim   Anne M. Raich  


Journal:
Expert Systems with Applications


Issue Date:
2012


Abstract(summary):

This paper proposes a multi-objective genetic algorithm (MOGA) for optimal placements of control devices and sensors in seismically excited civil structures through the integration of an implicit redundant representation genetic algorithm with a strength Pareto evolutionary algorithm 2. Not only are the total number and locations of control devices and sensors optimized, but dynamic responses of structures are also minimized as objective functions in the multi-objective formulation, i.e., both cost and seismic response control performance are simultaneously considered in structural control system design. The linear quadratic Gaussian control algorithm, hydraulic actuators and accelerometers are used for synthesis of active structural control systems on large civil structures. Three and twenty-story benchmark building structures are considered to demonstrate the performance of the proposed MOGA. It is shown that the proposed algorithm is effective in developing optimal Pareto front curves for optimal placement of actuators and sensors in seismically excited large buildings such that the performance on dynamic responses is also satisfied. [All rights reserved Elsevier].


Page:
7822-7833


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads