Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

The evolution of sex pheromones in an ecologically diverse genus of flies

Author:
MATTHEW R. E. SYMONDS   ADNAN MOUSSALLI   MARK A. ELGAR  


Issue Date:
2009


Abstract(summary):

In theory, pheromones important in specific mate recognition should evolve via large shifts in composition (saltational changes) at speciation events. However, where other mechanisms exist to ensure reproductive isolation, no such selection for rapid divergence is expected. In Bactrocera fruit flies (Diptera: Tephritidae), males produce volatile chemicals to attract females for mating. Bactrocera species exhibit great ecological diversity, with a wide range of geographical locations and host plants used. They also have other mechanisms, including temporal and behavioural differences, which ensure reproductive isolation. Therefore, we predicted that their sex pheromones would not exhibit rapid divergence at speciation events. In the present study, we tested this idea by combining data on male sex pheromone composition for 19 species of Bactrocera with a phylogeny constructed from DNA sequence data. Analyses of the combined data revealed positive correlations between pheromone differences and nucleotide divergence between species, and between the number of pheromone changes along the phylogeny and the branch lengths associated with these changes. These results suggest a gradual rather than saltational mode of evolution. However, remarkable differences in sex pheromones composition exist, even between closely-related species. It appears therefore that the mode of evolution of sex pheromones in Bactrocera is best described by rapid saltational changes associated with speciation, followed by gradual divergence thereafter. Furthermore, species that do not overlap ecologically are just as different pheromonally as species that do. Thus, large changes in pheromone composition appear to be achieved, even in cases where other mechanisms to ensure reproductive isolation exist. We suggest that these differences are closely associated with rapid changes in host plant use, which is a characteristic feature of Bactrocera speciation. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 594–603.



Page:
594-603


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads