Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

IRON fMRI measurements of CBV and implications for BOLD signal

Author:
Joseph B. Mandeville   jbm@nmr.mgh.harvard.edu  


Journal:
NeuroImage


Issue Date:
2012


Abstract(summary):

Changes in cerebral blood volume (CBV) and blood magnetization each induce changes in the transverse relaxation rate of MRI signal that are associated with changes in cerebral activity. BOLD signal, the preeminent method for non-invasive localization of task-induced brain function in human subjects, reflects a combination of changes in CBV and blood magnetization. Intravenous injection of paramagnetic contrast media, usually iron oxide particles surrounded by larger macromolecules, can overwhelm the BOLD response and sensitize signal to blood plasma volume, a method we have deemed “IRON?fMRI. The practical advantage of this technique is the ability to optimize blood magnetization at any echo time, enabling high detection power and the use of short echo times; for these reasons, IRON fMRI has become a valuable imaging tool in animal models. The temporal response of blood plasma volume is quite different from blood flow and BOLD signal; thus, CBV has been identified as a prominent source of transient features of the BOLD response. This article reviews the methodological advantages of the IRON method and how CBV measurements have informed our understanding of the BOLD response.


Page:
1000-1008


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads