Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Using Genetic Algorithm for Selection of Initial Cluster Centers for the K-Means Method

Author:
Wojciech Kwedlo  Piotr Iwanowicz  


Journal:
Lecture Notes in Computer Science


Issue Date:
2010


Abstract(summary):

The K-means algorithm is one of the most widely used clustering methods. However, solutions obtained by it are strongly dependent on initialization of cluster centers. In the paper a novel genetic algorithm, called GAKMI (Genetic Algorithm for the K-Means Initialization), for the selection of initial cluster centers is proposed. Contrary to most of the approaches described in the literature, which encode coordinates of cluster centers directly in a chromosome, our method uses binary encoding. In this encoding bits set to one select elements of the learning set as initial cluster centers. Since in our approach not every binary chromosome encodes a feasible solution, we propose two repair algorithms to convert infeasible chromosomes into feasible ones. GAKMI was tested on three datasets, using varying number of clusters. The experimental results are encouraging.


Page:
165-172


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads