Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

On the Performance of Feature Weighting K-Means for Text Subspace Clustering

Author:
Liping Jing, Michael K. Ng, Jun Xu  Joshua Zhexue Huang  


Journal:
Lecture Notes in Computer Science


Issue Date:
2005


Abstract(summary):

Text clustering is an effective way of not only organizing textual information, but discovering interesting patterns. Most existing methods, however, suffer from two main drawbacks; they cannot provide an understandable representation for text clusters, and cannot scale to very large text collections. Highly scalable text clustering algorithms are becoming increasingly relevant. In this paper, we present a performance study of a new subspace clustering algorithm for large sparse text data. This algorithm automatically calculates the feature weights in the k-means clustering process. The feature weights are used to discover clusters from subspaces of the text vector space and identify terms that represent the semantics of the clusters. A series of experiments have been conducted to test the performance of the algorithm, including resource consumption and clustering quality. The experimental results on real-world text data have shown that our algorithm quickly converges to a local optimal solution and is scalable to the number of documents, terms and the number of clusters.


Page:
pp.502-512


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads