Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

An Upper Bound for the Cardinality of an s-Distance Set in Euclidean Space

Author:
Etsuko Bannai   Kazuki Kawasaki   Yusuke Nitamizu and Teppei Sato  


Journal:
Combinatorica


Issue Date:
2003


Abstract(summary):

In this paper we show that if X is an s-distance set in$ {\left| X \right|} \leqslant {\sum\nolimits_{i = 0}^{2p - 1} {{\left( {{*{20}c} {{m + s - i - 1}} \\ {{s - i}} \\ } \right)}} } $ {\left| X \right|} \leqslant {\sum\nolimits_{i = 0}^{2p - 1} {{\left( {\begin{array}{*{20}c} {{m + s - i - 1}} \\ {{s - i}} \\ \end{array} } \right)}} } Moreover ifX is antipodal, then $ {\left| X \right|} \leqslant 2{\sum\nolimits_{i = 0}^{p - 1} {{\left( {{*{20}c} {{m + s - 2i - 2}} \\ {{m - 1}} \\ } \right)}} } $ {\left| X \right|} \leqslant 2{\sum\nolimits_{i = 0}^{p - 1} {{\left( {\begin{array}{*{20}c} {{m + s - 2i - 2}} \\ {{m - 1}} \\ \end{array} } \right)}} } .


Page:
535-557


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads