Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations.

Journal:
Clinics (Sao Paulo, Brazil)


Issue Date:
2010


Abstract(summary):

PURPOSE: To evaluate the performance of support vector machine, multi-layer perceptron and radial basis function neural network as auxiliary tools to identify keratoconus from Orbscan II maps.METHODS: A total of 318 maps were selected and classified into four categories: normal (n = 172), astigmatism (n = 89), keratoconus (n = 46) and photorefractive keratectomy (n = 11). For each map, 11 attributes were obtained or calculated from data provided by the Orbscan II. Ten-fold cross-validation was used to train and test the classifiers. Besides accuracy, sensitivity and specificity, receiver operating characteristic (ROC) curves for each classifier were generated, and the areas under the curves were calculated.RESULTS: The three selected classifiers provided a good performance, and there were no differences between their performances. The area under the ROC curve of the support vector machine, multi-layer perceptron and radial basis function neural network were significantly larger than those for all individual Orbscan II attributes evaluated (p < 0.05).CONCLUSION: Overall, the results suggest that using a support vector machine, multi-layer perceptron classifiers and radial basis function neural network, these classifiers, trained on Orbscan II data, could represent useful techniques for keratoconus detection.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads