Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Hydrophobic-Region-Induced Transitions in Self-Assembled Peptide Nanostructures

Author:
Xu, Hai  Wang, Jing  Han, Shuyi  Wang, Jiqian  Yu, Daoyong  Zhang, Hongyu  Xia, Daohong  Zhao, Xiubo  Waigh, Thomas A.  Lu, Jian R.  


Journal:
LANGMUIR


Issue Date:
2009


Abstract(summary):

Peptide amphiphiles readily self-assemble into a variety of nanostructures, but how molecular architectures affect the size and shape of the nanoaggregates formed is not well understood. From a combined TEM and AFM study of a series of cationic peptide surfactants A(m)K (m = 3, 6, and 9), we show that structural transitions (sheets, fibers/worm-like micelles, and short rods) can be induced by increasing the length of the hydrophobic peptide region. The trend can be interpreted using the molecular packing theory developed to describe surfactant structural transitions, but the entropic gain, decreased CAC, and increased electrostatic interaction associated with increasing the peptide hydrophobic chain need to be taken into account appropriately. Our analysis indicates that the trend in structural transitions observed from A(m)K peptide surfactants is opposite to that obtained from conventional monovalent ionic surfactants. The outcome reflects the dominant role of hydrophobic interaction between the side chains opposed by backbone hydrogen bonding and electrostatic repulsion between lysine side chains.


Page:
4115---4123


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads