Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Construction of an oceanic island: Insights from the El Hierro (Canary Islands) 2011-2012 submarine volcanic eruption

Author:
Rivera, J.  Lastras, G.  Canals, M.  Acosta, J.  Arrese, B.  Hermida, N.  Micallef, A.  Tello, O.  Amblas, D.  


Journal:
GEOLOGY


Issue Date:
2013


Abstract(summary):

Eight consecutive swath bathymetry data sets were obtained to monitor the submarine eruption that occurred from 10 October 2011 to 5 March 2012 south of El Hierro Island in the Canary Islands. An increase in seismic activity since July 2011 preceded the onset of the eruption, which was marked by seismic tremor and stained waters. The first bathymetry, 15 d after the eruption started, depicts a cone topping at 205 m depth, growing on a preexisting valley. Recurrent mapping shows changes in the morphology and depth of the cone, allowing us to identify collapses and calculate eruptive volumes and rates, which peaked at 12.7 x 10(6) m(3) d(-1) of non-dense rock equivalent (NDRE) on 29-30 October. The final cone consists of at least four vents along a north-northwest-south-southeast lineation, with the shallowest summit at 89 m depth. The total accumulated volume was 329 x 10(6) NDRE m(3), of which one-third formed the cone. Similar cones have been identified on the submerged flanks of the island, with volumes ranging from <50 x 10(6) to >1000 x 10(6) NDRE m(3). As in many other volcanic islands, large-scale landslides play an important role in the evolution of El Hierro. A giant flank landslide (El Golfo, 13-134 ka, 150-180 km(3)) mobilized, in a single event, a volume equivalent to 450-550 eruptions of the size of the reported one, showing striking differences in the construction and destruction rates of the island. This study is relevant for future monitoring programs and geohazard assessment of new submarine eruptions.


Page:
355---358


Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads