Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

ROC analysis of classifiers in machine learning: A survey

Author:
Majnik, Matjaz  Bosnic, Zoran  


Journal:
INTELLIGENT DATA ANALYSIS


Issue Date:
2013


Abstract(summary):

The use of ROC (Receiver Operating Characteristics) analysis as a tool for evaluating the performance of classification models in machine learning has been increasing in the last decade. Among the most notable advances in this area are the extension of two-class ROC analysis to the multi-class case as well as the employment of ROC analysis in cost-sensitive learning. Methods now exist which take instance-varying costs into account. The purpose of our paper is to present a survey of this field with the aim of gathering important achievements in one place. In the paper, we present application areas of the ROC analysis in machine learning, describe its problems and challenges and provide a summarized list of alternative approaches to ROC analysis. In addition to presented theory, we also provide a couple of examples intended to illustrate the described approaches.


Page:
531---558


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads