Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Symmetry energy constraints from giant resonances: A relativistic mean-field theory overview

Author:
Piekarewicz, J.  


Journal:
EUROPEAN PHYSICAL JOURNAL A


Issue Date:
2014


Abstract(summary):

Giant resonances encapsulate the dynamic response of the nuclear ground state to external perturbations. As such, they offer a unique view of the nucleus that is often not accessible otherwise. Although interesting in their own right, giant resonances are also enormously valuable in providing stringent constraints on the equation of state of asymmetric matter. With this view in mind, we focus on two modes of excitation that are essential in reaching this goal: the isoscalar giant monopole resonance (GMR) and the isovector giant dipole resonance (GDR). GMR energies in heavy nuclei are sensitive to the symmetry energy because they probe the incompressibility of neutron-rich matter. Unfortunately, access to the symmetry energy is hindered by the relatively low neutron-proton asymmetry of stable nuclei. Thus, the measurement of GMR energies in exotic nuclei is strongly encouraged. In the case of the GDR, we find the electric dipole polarizability of paramount importance. Indeed, the electric dipole polarizability appears as one of two laboratory observables -with the neutron-skin thickness being the other- that are highly sensitive to the density dependence of the symmetry energy. Finally, we identify the softness of skin and the nature of the pygmy resonance as important unsolved problems in nuclear structure.


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads