Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Creat membership Creat membership
Sign in

Forgot password?

Confirm
  • Forgot password?
    Sign Up
  • Confirm
    Sign In
Collection
For ¥0.57 per day, unlimited downloads CREATE MEMBERSHIP Download

toTop

If you have any feedback, Please follow the official account to submit feedback.

Turn on your phone and scan

home > search >

Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes RID A-3578-2011

Author:
Mohammad, A. W.  Hilal, N.  Al-Zoubi, H.  Darwish, N. A.  


Journal:
JOURNAL OF MEMBRANE SCIENCE


Issue Date:
2007


Abstract(summary):

In this work, the Donnan-steric-pore-model-dielectric-exclusion (DSPM-DE) model was used to predict permeate fluxes and rejections of various single salts solutions in NF90 nanofiltration membrane. The salts used were NaCl, KCl, MgCl(2), Na(2)SO(4), Na(2)CO(3), MgSO(4) and CaSO(4). The concentration of salts used in this study was generally higher than in previous reported studies. The concentrations were chosen to represent typical ions concentrations in seawater environment. At such higher concentration, the osmotic pressure difference lead to flux decline, which was quite significant when compared to the pure water flux. The osmotic pressure was calculated using the Pitzer equation as well as Vant Hoff equation. It was found that both equations managed to estimate the osmotic pressure difference with negligible difference for the range of concentrations used in this study. The Vant Hoff equation was then incorporated into the DSPM-DE model to allow for prediction of permeate flux in addition to salt rejections. The DSPM-DE model was able to predict the permeate fluxes and rejections with reasonable agreement for some of the salts by just using fitting parameters obtained using the NaCl rejection data. (c) 2006 Elsevier B.V. All rights reserved.


Page:
40---50


VIEW PDF

The preview is over

If you wish to continue, please create your membership or download this.

Create Membership

Similar Literature

Submit Feedback

This function is a member function, members do not limit the number of downloads